Colour vision in animals

Josh Grosse – Contact

The light different animals can see covers a range from about 300 nm to over 750 nm in wavelength. Shorter than this is middle ultraviolet, which is absorbed by electrons in ordinary components of cells. Longer is infrared, which is associated with vibrations of molecules but not the energy transitions of electrons inside them.

All eyes detect light using proteins called opsins that combine with retinal or derived chromophores. Normally this exists in bent 11-cis form, converted by appropriate wavelengths to the straight all-trans form. This changes the shape of the opsin, which is picked up by transducin proteins that change the membrane potential and create a feedback loop.

The ability to see different colours depends on multiple opsins and is peculiar to two major groups, the arthropods and vertebrates. Some molluscs have very well-developed eyes but apparently only single opsins and so monochromatic vision. A few segmented worms have more than one but it is difficult to tell if they actually see differences from them.

Vertebrates

Rod and cone opsins

Vertebrate eyes have visual pigments in four main groups called LWS, Rh, SWS2, and SWS1 in order from long to short wavelengths. In most Rh is also split into Rh1 and Rh2, which goes more with the division of retina cells into rods and cones. (Rh is short for rhodopsin-like from Greek rodon, rose, since they tend to absorb green.)

Rod cells are more sensitive and accurate and so work for low-light vision. In most groups these only have Rh1. Cone cells on the other hand refresh faster and so work for bright-light vision, and usually have the other opsins. When there is more than one type of cone comparison between them allows discrimination of different colours.

Circles = cone pigments
Lines = rod pigments
* = partial sequences

Species Maximum absorptions Opsin genes References
LWS Rh2 Rh1 SWS2 SWS1
Jawless fish
Geotria australis (southern lampreys) 610, 515, 506, 452, 371 AY366491 AY366493
AY366494
AY366492 AY366495 Collin, Knight, et al. (2003)
Davies, Cowing, et al. (2007)
Petromyzon marinus (northern lampreys) 600, 525 EU571209 AH005459 Davies, Collin, Hunt (2009)
Eptatretus cirrhatus (hagfish) 498 KT749668 Lamb, Patel, et al. (2016)
Cartilaginous fish
Callorhinchus milii (chimaeras) cones 548, 499, 442, rods 496 EF565165
EF565166
EF565168 EF565167 Davies, Carvalho, et al. (2009)
Chiloscyllium punctatum (bamboo sharks) cones 532, rods 500 MN519165 MN519144 Hart, Lamb, et al. (2020)
Carcharinus melanopterus (requiem sharks) cones 528, rods 505 MN519158 MN519147
Aptychotrema vincentiana (banjo rays) cones 557, 450, rods 504 MN519142 MN519152 MN519146
Neotrygon kuhlii (stingrays) cones 552, 476, rods 497 MN519164 MN519153 MN519143
Ray-finned fish
Chitala ornata (featherbacks) cones 564, 510, 466, 367, rods 504 MG584730
(y cones)
MG584731
(g cones)
MG584732 MG584734 MG584733 Liu, Wang, et al. (2019)
Anguilla anguilla (migratory eels) cones 525, 435 adult, rods 523 juv. to 482 adult FJ515778 L78007*
(juv.)
L78008*
(adult)
FJ515779
(adult)
Archer, Hope, Partridge (1995)
Cottrill, Davies, et al. (2009)
Sardinops sagax (sardines) cones 542, 522, 493, 393, rods 502 AB731903
(y cones)
LC007928
LC007929
(g cones)
LC007927
(b cones)
LC007931 LC007930 Miyazaki, Kondrashev, Tsuchiya (2018)
Danio rerio (minnows) cones 565, 482, 411, 361, rods 503 AB087804
(central)
AB087803
(peripheral)
AB087805
AB087806
(central)
AB087807
AB087808
(peripheral)
AB087811
(central)
HQ286326
(peripheral)
AB087809 AB087810 Allison, Haimberger, et al. (2004)
Takechi & Kawamura (2005)
Morrow, Lazic, et al. (2017)
Carassius auratus (carp) cones 618, 535, 434, 380, rods 522 L11867 L11866
L11865
L11863
KY026043*
L11864 D85863 Parry & Bowmaker (2000)
Yokoyama & Yokoyama (2000)
Morrow, Lazic, et al. (2017)
Bryconamericus gonzalezi (characins) cones 576, 536, 490, 456, rods 514 MT310726
(y cones)
MT310760
MT310761
(g cones)
MT310787
(b cones)
MT310799
MT310812
MT310777 Escobar-Camacho, Carleton, et al. (2020)
Oncorhynchus kisutch (salmon) cones 579 juv. to 607 adult, 503 to 553, 359 to 446, rods 510 to 531 AY214145
(juv. A1 →
adult A2)
AY214147
(juv. A1 →
adult A2)
AY214146
(juv. A1 →
adult A2)
AY214149
(adult)
AY214148
(juv.)
Dann, Allison, et al. (2004)
Flamarique (2005)
Gadus morhua (cod) cones 517, 446, rods 500 AF385824
(life)
KJ572530
KJ572531
(juv.)
AF385832 AF385822
(life)
KJ572532*
(juv.)
Dartnall & Lythgoe (1965)
Valen, Edvardsen, et al. (2014)
Valen, Eilertsen, et al. (2016)
Rhinecanthus aculeatus (triggerfish) cones 528, 480, 413, rods 498 ON060692
(minor)
ON060694
(g cones)
ON060696
ON060697
(b cones)
ON060693 ON060701 Cheney, Hudson, et al. (2022)
Gasterosteus aculeatus (sticklebacks) cones 618-566, 547-514, 460-434, 379-365, rods 531-507 KC594699
(A2 fw to
A1 marine)
KC594702
(A2 fw to
A1 marine)
KC774627*
(A2 fw to
A1 marine)
KC774625*
(A2 fw to
A1 marine)
KC774626*
(A2 fw to
A1 marine)
Flamarique, Cheng, et al. (2013)
Shao, Wang, et al. (2014)
Dascyllus trimaculatus (damselfish) cones 512, 471, 368, rods 499 HQ286546
(minor)
HQ286532
(g cones)
HQ286522
(b cones)
HQ286552 HQ286512
(minor)
HQ286502 Hofmann, Marshall, et al. (2012)
Stieb, Carleton, et al. (2016)
Tramitichromis intermedius (cichlids) cones 569, 532, 455, rods 506 GQ452105
(y cones)
GQ422498
(g cones)
GQ422501
GQ422523
(minor)
GQ422473 GQ422526
(b cones)
GQ422529
(minor)
GQ422524
(minor)
Parry, Carleton, et al. (2005)
Hofmann, O'Quin, et al. (2009)
Poecilia reticulata (guppies)
Dots = yg, g cones
cones 571+548+533 from pigments at 571+516, 476, 408, 353, rods 503 AB748985
(y, yg cones)
LC127184
(yg or g?)
LC127186
(yg or g?)
LC127187
(b cones)
LC127191 LC127188
(minor)
LC127189
(v cones)
LC127190 Kawamura, Kasagi, et al. (2016)
Sandkam, Dalton, et al. (2018)
Lobe-finned fish
Latimeria chalumnae (coelacanths) cones 485, rods 478 AH007713 AH007712 Yokoyama, Zhang, et al. (1999)
Neoceratodus forsteri (lungfish) cones 623, 558, 479, 366 juv., rods 540 EF526297 EF526296 EF526295 EF526299 EF526298
(juv.)
Bailes, Davies, et al. (2007)
Hart, Bailes, et al. (2008)
Amphibians
Ambystoma tigrinum (salamanders) cones 586 juv. to 568 adult, 434 juv., 361, rods 516 to 506, 430 AF038947
(juv. A2 →
adult A1)
U36574
(juv. A2 →
adult A1)
AF038946
(juv. cones,
S rods)
AF038948 Chen, Ma, et al. (1996)
Xu, Hazard III, et al. (1998)
Isayama, Chen, et al. (2014)
Xenopus laevis (clawed frogs) cones 611, 440, rods 524, 445 U90895 L07770 AY177405
(S rods)
U23463 Rölich & Szél (2000)
Darden, Wu, et al. (2003)
Lithobates sphenocephalus (leopard frogs) cones 626 juv. to 603+579 adult, rods 533 to 505+501, 437 OM243061*
(A2 → A1)
OM243049*
(A2 → A1)
OM243084*
(S rods)
OM243072*
(uncertain)
Schott, Perez, et al. (2022)
Schott, Bell, et al. (2022)
Mammals
Ornithorhynchus anatinus (platypuses) cones 550, 451, rods 498 EF050078 EF050076 EF050077 Davies, Carvalho, et al. (2007)
Loxodonta africana (elephants) cones 552, 419, rods 496 AY686754 AY686752 AY686753 Yokoyama, Takenaka, et al. (2005)
Trichechus manatus (manatees) cones 556, 411, rods 502 AY228447 AF055319 AY228443 Fasick & Robinson (2000)
Newman & Robinson (2006)
Felis catus (cats) cones 553, 450, rods 501 AF132040 AJ417432 BK006813 Guenther & Zrenner (1993)
Levenson, Ponganis, et al. (2006)
Hunt, Carvalho, et al. (2009)
Phoca vitulina (seals) cones 552, rods 501 AF110495 AF055317 Levenson, Ponganis, et al. (2006)
Globicephala melas (dolphins) cones 531, rods 488 AY228446 AF055315 Fasick, Bischoff, et al. (2011)
Bos taurus (cattle) cones 552, 438, rods 500 AF280398 M21606 U92557 Yokoyama & Yokoyama (2000)
Fasick, Bischoff, et al. (2011)
Artibeus jamaicensis (bats) cones 560, 358, rods 501 MK209543 MK209497 MK209584 Zhao, Ru, et al. (2009)
Li, Chi, et al. (2018)
Simões, Foley, et al. (2018)
Sadier, Davies, et al. (2018)
Homo sapiens (humans) cones 560, 530, 424, rods 497 AH005298
AH005296
U49742 AH003620 Yokoyama & Yokoyama (2000)
Cavia porcellus (cavies) cones 516, 420, rods 497 AF132042 EF457995 AY552608 Jacobs & Deegan II (1994)
Yokoyama & Radlwimmer (1999)
Parry, Poopalasundaram, et al. (2004)
Simpanya, Wistow, et al. (2008)
Rattus norvegicus (rats) cones 509, 358, rods 498 AH006946 Z46957 U63972 Yokoyama & Yokoyama (2000)
Lizards & Snakes
Gonatodes annularis (geckos) cones 542, 475, 362 KU645244 KU645217 KU645270* Ellingson, Fleishman, Loew (1995)
Cai, Fan, et al. (2021)
Gekko gecko (geckos) rods 521, 467, 364 M92036
(rods)
M92035
(rods)
AY024356
(rods)
Yokoyama & Blow (2001)
Anolis carolinensis (anoles) cones 625, 503, 462, 365 U08131 AH007735 L31503
(minor)
AF133907 AH007736 Kawamura & Yokoyama (1998)
Yokoyama & Yokoyama (2000)
Xenopeltis unicolor (sunbeam snakes) cones 550, 361, rods 497 FJ497235 FJ497233 FJ497234 Davies, Cowing, et al. (2009)
Agkistrodon contortrix (vipers) cones 544, 416, rods 496 MK494133* MK494149* MK494155* Gower, Sampaio, et al. (2019)
Hydrophis peronii (sea snakes) cones 560, 496, 439 MT337800 MT337837
(cones)
MT337764* Hart, Coimbra, et al. (2012)
Simões, Gower, et al. (2020)
Thamnophis sirtalis (garter snakes) cones 554, 485, 360 MH011580 MH011461
(cones)
MH011642 Simões, Sampaio, et al. (2016)
Schott, Van Nynatten, et al. (2018)
Hypsiglena torquata (night snakes) rods 535, 500, 371 MH011576
(rods)
MH011457 MH011638
(rods)
Arizona elegans (colubrines) rod-cone hybrids 538, 484, 366 KU323986
(hybrids)
KU324006
(hybrids)
KU323997
(hybrids)
Lampropeltis getula (colubrines) cones 538, 370, rods 493 MH011577 MH011458 MH011639
Turtles
Trachemys scripta (pond turtles) cones 617, 518, 458, 372, rods 518 OP186961* OP186960* OP186959* OP186958* OP186957* Corredor, Hauzman, et al. (2022)
Birds
Dromaius novaehollandiae (emus) cones 562, 502, 453, 367, rods 501 KU568452* KU568455* KU568453* KU56845* KU56846* Hart, Mountford, et al. (2016)
Gallus gallus (chickens) cones 571, 508, 455, 415, rods 503 M62903 M92038 D00702 M92037 M92039 Yokoyama & Yokoyama (2000)
Columba livia (pigeons) cones 559, 503, 448, 393, rods 502 AH007800 AH007731 AH007730 AH007799 AY686753 Kawamura, Blow, Yokoyama (1999)
Grus americana (cranes) cones 561, 499, 450, 404, rods 500 KM508487 KM508489 KM508488 KM508491 KM508490 Porter, Kingston, et al. (2014)
Platycercus elegans (parrots) cones 567, 509, 440, 365, rods 510 KF134493 KF134489* KF134487* KF134491* KF134492 Knott, Davies, et al. (2013)
Ptilonorhynchus violaceus (bowerbirds) cones 562, 511, 454, 410, rods 503 JQ034371* JQ034377* JQ034383* JQ034388* HM773352* Zwiers (2009) dissert.
Coyle, Hart, et al. (2012)
Taeniopygia guttata (finches) cones 560, 505, 440, 359, rods 501 AF222333 AF222330 AF222329 AF222332 AF222331 Yokoyama, Radlwimmer, Blow (2000)
Yokoyama, Blow, Radlwimmer (2000)

Arthropods

Arachnid & crustacean opsins

Arthropods have two main types of eyes, lateral and median, as well as additional larval eyes in horseshoe crabs. Ancestrally the lateral eyes are compound and the others are simple light sensors or ocelli. However, sometimes the lateral eyes are broken up or lost and the median eyes are the principal ones, for instance in arachnid groups like spiders.

The visual pigments here come in five main groups named LWS1, LWS2, MWS1, MWS2, and SWS, with the first again specific to horseshoe crabs, and often include multiple variants. However in classes other than insects there are relatively few cases where the opsins have actually been related to different wavelengths.

There is also not much indication that these classes compare different pigments. Mantis shrimp eyes have a special midband with about a dozen combinations of opsins to detect colour, but only distinguish wavelengths to 15 nm or so. These then act for quick recognition of different ranges rather than being contrasted to determine finer shades.

M = maximum absorptions for visual pigments
S = spectral sensitivities, i.e. with screening effects
Circles = lateral eyes
Dots = median eyes (where reported)

Species Maximum absorptions Opsin genes References
LWS1 LWS2 MWS1 MWS2 SWS
Arachnids & allies
S: Limulus polyphemus (horseshoe crabs) median 525, lateral 520, both 360 KM538950
KM538951
(median)
L03781-82
AY190512*
AY190514*
(lat., larval)
KM538952
(median)
FJ791252
(lat., larval)
JN210564
(all eyes)
Nolte & Brown (1970)
Dalal, Jinks, et al. (2003)
Battelle, Kempler, et al. (2015)
Henze & Oakley (2015)
S: Cupiennius salei (spiders) all eyes 520, 480, lateral 340 HF549177
HF549178
HF549179
(lateral)
Zopf, Schmid, et al. (2013)
Ostracoda
S: Skogsbergia lerneri (cypridinids) compound 460 AF353364*
(lateral)
AF353346*
(median)
& sim.
Oakley & Huber (2004)
Malacostraca
M: Neogonodactylus oerstedtii (mantis shrimp)
Lines = cells in midband rows of eye
Joined = layers in same row
compound 528, 551/525 (R3), 522/503 (R2), 488 (R5+R6), 459/424 (R4), 422/401/383 (R1), 334 MT112859
MT112878-86
MT112880*
MT112888*
MT112862-63
MT112866-67
MT112869-70
MT112860*
MT112864
MT112868
MT112887
KJ127520*
KJ127521*
Cronin & Marshall (1989)
Bok, Porter, et al. (2014)
Porter, Awata, et al. (2020)
S: Procambarus clarkii (crayfish) compound 562-533, 440 KT304796
(A2 winter ↔
A1 summer)
KT304797 Zeiger & Goldsmith (1993)
Kingston & Cronin (2015)
S: Hemigrapsus sanguineus (shore crabs) compound 480 D50583
D50584
Sakomoto, Hisatomi, et al. (1996)
M: Mysis diluviana (opossum shrimp) compound 529-501 DQ852591*
(A2 to A1)
Jokela-Määttä, Pahlberg, et al. (2005)
Porter, Cronin, et al. (2007)
Branchiopoda
M: Triops longicaudatus (tadpole shrimp) compound 606, 500, 416, 362 AB293434
AB298800*
AB298801*
AB293433 AB293435 Kashiyama, Seki, et al. (2009)
Lessios, Rutowski, et al. (2018)
Palecanda, Iwanicki, et al. (2022)

Insect opsins

Insects have lost the crustacean MWS opsins but instead have double copies of the others, called LWS2a, LWS2b, SWS, and UVS in order from longer to shorter wavelengths. When present LWS2b is often associated with ocelli while the others generally give colour discrimination in the compound eyes, sometimes with further duplications or losses.

Species Maximum absorptions Opsin genes References
LWS2a LWS2b SWS UVS
Various orders
S: Periplaneta americana (cockroaches) compound 507, 365 KP861985 KP981367 KP941115 French, Meisner, et al. (2015)
S: Gryllus bimaculatus (crickets) compound 515, 445, 332, ocelli 511, 350 HM363621
(compound)
HM363620
(ocelli)
HM363622
(compound)
HM363623
(compound)
(? in ocelli)
Henze, Dannenhauer, et al. (2012)
S: Nephotettix cincticeps (leafhoppers) compound 527, 449, 354 AB761156 AB761157 AB761158 Wakakuwa, Stewart, et al. (2014)
S: Apis mellifera (bees) compound 544, 436, 344, ocelli 499, 340 BK005514
(compound)
BK005515
(ocelli)
BK005512
(compound)
BK005513
(all eyes)
Velarde, Sauer, et al. (2005)
M: Drosophila melanogaster (flies) compound 486, 515/355 (y), 442/331 (p), ocelli 418 Z86118
(compound:
y units)
K02315
(y+p units)
M12896
(ocelli)
U67905
(compound:
p units)
AH001040
(y units)
M17718
(p units)
Salcedo, Huber, et al. (1999)
Yokoyama & Yokoyama (2000)
Moths & Butterflies
M: Papilio xuthus (swallowtails)
Line = extra receptor from filters
compound 575 (r), 530, 515, 460 (nfr+y), 360 (nfr) or 400 from filters (fr) AB007425
(r units)
AB007423
AB007424
(r+y units)
AB028217*
(non-fluor.
r+y units)
AB028218*
(r units)
Arikawa, Inokuma, Eguchi (1987)
Kitamoto, Ozaki, Arikawa (2000)
Arikawa, Mizuno, et al. (2003)
M: Vanessa cardui (nymphalid butterflies) compound 530, 470, 360 AF385333 AF414075 AF414074 Briscoe, Bernard, et al. (2003)
M: Heliconius erato (nymphalid butterflies)
Line = extra receptor from filters
compound 555 or 600 from filters, 470, 390, 356 (females) AY918907 AY918906 AY918905
(all)
AY918904
(females)
Zaccardi, Kelber, et al. (2006)
Briscoe, Bybee, et al. (2010)
McCullough, Osorio, Briscoe (2016)
M: Tharsalea rubidus (lycaenid butterflies) compound 568, 500, 437, 360 AY587901 AY587903
AY587902
AY587904 Sison-Mangus, Bernard, et al. (2006)
M: Manduca sexta (hawk moths) compound 520, 450, 347 L78080 AD001674 L78081 Chase, Bennett, White (1997)
Beetles
M: Chrysochroa rajah (jewel beetles) compound 584, 509, 431, 356 OP722947
OP722948
OP722930
OP722931
Sharkey, Blanco, et al. (2023)
M: Photinus pyralis (fireflies) compound 545, 380 KR150960 KR150972 Cronin, Järvilehto, et al. (2000)
Martin, Lord, et al. (2015)
S: Protaetia brevitarsis (scarabs) compound 510, 370 MW886063 MW886062 Lin & Wu (1992)
Sharkey, Powell, Bybee (2021)
S: Coccinella septempunctata (ladybugs) compound 520, 420, 360 KY368274 KY368276
KY368275
Lin (1993)
Sharkey, Fujimoto, et al. (2017)
S: Leptinotarsa decemlineata (leaf beetles) compound 530, 450, 370 KY368312 KY368310
KY368311
Döring & Skorupski (2007)
Sharkey, Fujimoto, et al. (2017)

References

The following gives more complete versions of the references from the table. The opsin genes are all listed by accession number from GenBank. I have kept to examples where there are at least partial sequences, marked by asterisks, but for those interested Longcore has a repository including spectral sensitivities for some other terrestrial species.

  1. Allison, Haimberger, Hawryshyn, Temple (2005). Visual pigment composition in zebrafish: Evidence for a rhodopsin–porphyropsin interchange system. Visual Neuroscience 21(6): 945-952.
  2. Archer, Hope, Partridge (1995). The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proceedings of the Royal Society of London B: Biological Sciences 262: 289-295.
  3. Arikawa, Inokuma, Eguchi (1987). Pentachromatic Visual System in a Butterfly. Naturwissenschaften 74: 297-298.
  4. Arikawa, Mizuno, Kinoshita, Stavenga (2003). Coexpression of Two Visual Pigments in a Photoreceptor Causes an Abnormally Broad Spectral Sensitivity in the Eye of the Butterfly Papilio xuthus. Journal of Neuroscience 23(11): 4527-4532.
  5. Bailes, Davies, Trezise, Collin (2007). Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri. BMC Evolutionary Biology 7: 200.
  6. Battelle, Kempler, Saraf, Marten, Dugger, Speiser, Oakley (2015). Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes. Journal of Experimental Biology 218(3): 466-479.
  7. Bok, Porter, Place, Cronin (2014). Biological Sunscreens Tune Polychromatic Ultraviolet Vision in Mantis Shrimp. Current Biology 24(14): 1636-1642.
  8. Briscoe, Bernard, Szeto, Nagy, White (2003). Not all butterfly eyes are created equal: Rhodopsin absorption spectra, molecular identification, and localization of ultraviolet-, blue-, and green-sensitive rhodopsin-encoding mRNAs in the retina of Vanessa cardui. Journal of Comparative Neurology 458(4): 334-349.
  9. Briscoe, Bybee, Bernard, Chiao (2010). Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Proceedings of the National Academy of Sciences 107(8): 3628-3633.
  10. Cai, Fan, Yue, Li, Yan, Zhou (2021). Molecular Evolution of Visual Opsin Genes during the Behavioral Shifts between Different Photic Environments in Geckos. Asian Herpetological Research 12(3): 280-288.
  11. Chase, Bennett, White (1997). Three Opsin-Encoding cDNAS from the Compound Eye of Manduca Sexta. Journal of Experimental Biology 200(18): 2469-2478.
  12. Chen, Ma, Corson, Hazard, Crouch (1996). Molecular cloning of a rhodopsin gene from salamander rods. Investigative ophthamology and visual science 37(9): 1907-1913.
  13. Cheney, Hudson, de Busserolles, Luehrmann, Shaughnessy, van der Berg, Green, Marshall, Cortesi (2022). Seeing Picasso: an investigation into the visual system of the triggerfish Rhinecanthus aculeatus. Journal of Experimental Biology 225(7): jeb243907.
  14. Collin, Knight, Davies, Potter, Hunt, Trezise (2003). Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Current Biology 13(22): R864-R865.
  15. Corredor, Hauzman, Gonçalves, Ventura (2022). Genetic characterization of the visual pigments of the red-eared turtle (Trachemys scripta elegans) and computational predictions of the spectral sensitivity. Journal of Photochemistry and Photobiology 12: 100141.
  16. Cottrill, Davies, Semo, Bowmaker, Hunt, Jeffrey (2009). Developmental dynamics of cone receptors in the eel. BMC Developmental Biology 9: 71.
  17. Coyle, Hart, Carleton, Borgia (2012). Limited variation in visual sensitivity among bowerbird species suggests that there is no link between spectral tuning and variation in display colouration. Journal of Experimental Biology 215(7): 1090-1105.
  18. Cronin, Järvilehto, Weckström, Lall (2000). Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae). Journal of Comparative Physiology A 186: 1-12.
  19. Cronin & Marshall (1989). Multiple spectral classes of photoreceptors in the retinas of gonodactyloid stomatopod crustaceans. Journal of Comparative Physiology A 166: 261-275.
  20. Dalal, Jinks, Cacciatore, Greenberg, Battelle (2003). Limulus opsins: Diurnal regulation of expression. Visual Neuroscience 20(5): 523-534.
  21. Dann, Allison, Levin, Taylor, Hawryshyn (2004). Salmonid Opsin Sequences Undergo Positive Selection and Indicate an Alternate Evolutionary Relationship in Oncorhynchus. Experimental eye research 78(5): 1015-1024.
  22. Darden, Wu, Znoiko, Hazard III, Kono, Crouch, Ma (2003). A novel Xenopus SWS2, P434 visual pigment: Structure, cellular location, and spectral analyses. Molecular Vision 9:191-199.
  23. Dartnall & Lythgoe (1965). The Clustering of Fish Visual Pigments Around Discrete Spectral Positions, and Its Bearing on Chemical Structure. In: Reuck, Knight eds. Ciba Foundation Symposium, Colour vision: physiology and experimental psychology: 3-26.
  24. Davies, Carvalho, Cowing, Beazley, Hunt (2007). Visual pigments of the platypus: A novel route to mammalian colour vision. Current Biology 17(5): R161-R163.
  25. Davies, Carvalho, Tay, Brenner, Hunt, Venkatesh (2009). Into the blue: Gene duplication and loss underlie color vision adaptations in a deep-sea chimaera, the elephant shark Callorhinchus milii. Genome Research 19(3): 415-426.
  26. Davies, Collin, Hunt (2009). Adaptive Gene Loss Reflects Differences in the Visual Ecology of Basal Vertebrates. Molecular Biology and Evolution 26(8): 1803-1809.
  27. Davies, Cowing, Bowmaker, Carvalho, Gower, Hunt (2009). Shedding Light on Serpent Sight: The Visual Pigments of Henophidian Snakes. Journal of Neuroscience 29(23): 7519-7525.
  28. Davies, Cowing, Carvalho, Potter, Trezise, Hunt, Collin (2007). Functional characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey. The FASEB Journal 21(11): 2713-2724.
  29. Döring & Skorupski (2007). Host and Non-Host Leaves in the Colour Space of the Colorado Potato Beetle (Coleoptera: Chrysomelidae). Entomologia Generalis 29(2-4): 81-95.
  30. Ellingson, Fleishman, Loew (1995). Visual pigments and spectral sensitivity of the diurnal gecko Gonatodes albogularis. Journal of Comparative Physiology A 177: 559-567.
  31. Escobar-Camacho, Carelton, Narain, Pierotti (2020). Visual pigment evolution in Characiformes: The dynamic interplay of teleost whole-genome duplication, surviving opsins and spectral tuning. Molecular Ecology 29(12): 2234-2253.
  32. Fasick, Bischoff, Brennan, Velasquez, Andrade (2011). Estimated absorbance spectra of the visual pigments of the North Atlantic right whale (Eubalaena glacialis). Marine Mammal Science 27(4): E321-E331.
  33. Fasick & Robinson (2000). Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth. Visual Neuroscience 17(5): 781-788.
  34. Flamarique (2005). Temporal shifts in visual pigment absorbance in the retina of Pacific salmon. Journal of Comparative Physiology A 191: 37-49.
  35. Flamarique, Cheng, Bergstrom, Reimchen (2013). Pronounced heritable variation and limited phenotypic plasticity in visual pigments and opsin expression of threespine stickleback photoreceptors. Journal of Experimental Biology 216(4): 656-667.
  36. French, Meisner, Liu, Weckström, Torkkeli (2015). Transcriptome analysis and RNA interference of cockroach phototransduction indicate three opsins and suggest a major role for TRPL channels. Frontiers in Physiology 6: 207.
  37. Gower, Sampaio, Peichl, Wagner, Loew, Mclamb, Douglas, Orlov, Grace, Hart, Hunt, Partridge, Simões (2019). Evolution of the eyes of vipers with and without infrared-sensing pit organs. Biological Journal of the Linnaean Society 126(4): 769-823.
  38. Guenther & Zrenner (1993). The spectral sensitivity of dark- and light-adapted cat retinal ganglion cells. Journal of Neuroscience 13(4): 1543-1550.
  39. Hart, Bailes, Vorobyev, Marshall, Collin (2008). Visual ecology of the Australian lungfish (Neoceratodus forsteri). BMC Ecology 8: 21.
  40. Hart, Coimbra, Collin, Westhoff (2012). Photoreceptor types, visual pigments, and topographic specializations in the retinas of hydrophiid sea snakes. Journal of Comparative Neurology 520(6): 1246-1261.
  41. Hart, Mountford, Davies, Collin, Hunt (2016). Visual pigments in a palaeognath bird, the emu Dromaius novaehollandiae: implications for spectral sensitivity and the origin of ultraviolet vision. Proceedings of the Royal Society B: Biological Sciences 283: 20161063.
  42. Hart, Lamb, Patel, Chuah, Natoli, Hudson, Cutmore, Davies, Collin, Hunt (2020). Visual Opsin Diversity in Sharks and Rays. Molecular Biology and Evolution 37(3): 811-827.
  43. Henze, Dannenhauer, Kohler, Labhart, Gesemann (2012). Opsin evolution and expression in Arthropod compound Eyes and Ocelli: Insights from the cricket Gryllus bimaculatus. BMC Evolutionary Biology 12: 163.
  44. Henze & Oakley (2015). The Dynamic Evolutionary History of Pancrustacean Eyes and Opsins. Integrative and Comparative Biology 55(5): 830-842.
  45. Hofmann, Marshall, Abdilleh, Patel, Siebeck, Carleton (2012). Opsin Evolution in Damselfish: Convergence, Reversal, and Parallel Evolution Across Tuning Sites. Journal of Molecular Evolution 75: 79-91.
  46. Hofmann, O'Quin, Marshall, Cronin, Seehausen, Carleton (2009). The Eyes Have It: Regulatory and Structural Changes Both Underlie Cichlid Visual Pigment Diversity. PLOS ONE 7(12): e1000266.
  47. Hunt, Carvalho, Cowing, Davies (2009). Evolution and spectral tuning of visual pigments in birds and mammals. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1531): 2941–2955.
  48. Isayama, Chen, Kono, Fabre, Slavsky, DeGrip, Ma, Crouch, Makino (2014). Coexpression of three opsins in cone photoreceptors of the salamander Ambystoma tigrinum. Journal of Comparative Neurology 552(10): 2249-2265.
  49. Jacobs & Deegan II (1994). Spectral Sensitivity, Photopigments, and Color Vision in the Guinea Pig (Cavia porcellus). Behavioural Neuroscience 108(5): 993.
  50. Jokela-Määttä, Pahlberg, Lindström, Zak, Porter, Ostrovsky, Cronin, Donner (2005). Visual pigment absorbance and spectral sensitivity of the Mysis relicta species group (Crustacea, Mysida) in different light environments. Journal of Comparative Physiology A 191: 1087-1097.
  51. Kawamura, Blow, Yokoyama (1999). Genetic Analyses of Visual Pigments of the Pigeon (Columba livia). Genetics 153(4): 1839-1850.
  52. Kawamura, Kasagi, Kasai, Tezuka, Shoji, Takahashi, Imai, Kawata (2016). Spectral sensitivity of guppy visual pigments reconstituted in vitro to resolve association of opsins with cone cell types. Vision Research 127: 67-73.
  53. Kingston & Cronin (2015). Short- and long-wavelength-sensitive opsins are involved in photoreception both in the retina and throughout the central nervous system of crayfish. Journal of Comparative Physiology A 201: 1137-1145.
  54. Kashiyami, Seki, Numata, Goto (2009). Molecular Characterization of Visual Pigments in Branchiopoda and the Evolution of Opsins in Arthropoda. Molecular Biology and Evolution 26(2): 299-311.
  55. Kawamura & Yokoyama (1998). Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis). Vision Research 38(1): 37-44.
  56. Kitamoto, Ozaki, Arikawa (2000). Ultraviolet and Violet Receptors Express Identical mRNA Encoding an Ultraviolet-Absorbing Opsin: Identification and Histological Localization of two Mrnas Encoding Short-Wavelength-Absorbing Opsins in the Retina of the Butterfly Papilio xuthus. Journal of Experimental Biology 203(19): 2887-2894.
  57. Knott, Davies, Carvalho, Berg, Buchanan, Bowmaker, Bennett, Hunt (2013). How parrots see their colours: novelty in the visual pigments of Platycercus elegans. Journal of Experimental Biology 216(23): 4454-4461.
  58. Lamb, Patel, Chuah, Natoli, Davies, Hart, Collin, Hunt (2016). Evolution of Vertebrate Phototransduction: Cascade Activation. Molecular Biology and Evolution 33(8): 2064-2087.
  59. Lessios, Rutowski, Cohen, Sayre, Strausfeld (2018). Multiple spectral channels in branchiopods. I. Vision in dim light and neural correlates. Journal of Experimental Biology 221(10): jeb165860.
  60. Levenson, Ponganis, Crognale, Deegan II, Dizon, Jacobs (2006). Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter. Journal of Comparative Physiology A 192: 833-843.
  61. Li, Chi, Liu, Xia, Irwin, Zhang, Liu (2018). Retention and losses of ultraviolet-sensitive visual pigments in bats. Scientific Reports 8(1): 11933.
  62. Lin (1993). Identification of photoreceptor locations in the compound eye of Coccinella septempunctata Linnaeus (Coleoptera, Coccinellidae). Journal of Insect Physiology 39(7): 555-562.
  63. Lin & Wu (1992). A comparative study on the color vision of four coleopteran insects. Bulletin of the Institute of Zoology, Academia Sinica 31(2): 81-88.
  64. Liu, Wang, Lin, Thompson, Lu, Vo, Yan, Zakon (2019). The Cone Opsin Repertoire of Osteoglossomorph Fishes: Gene Loss in Mormyrid Electric Fish and a Long Wavelength-Sensitive Cone Opsin That Survived 3R. Molecular Biology and Evolution 36(3): 447-457.
  65. Martin, Lord, Branham, Bybee (2015). Review of the firefly visual system (Coleoptera: Lampyridae) and evolution of the opsin genes underlying color vision. Organisms Diversity & Evolution 15: 513-526.
  66. McCullough, Osorio, Briscoe (2016). Sexual dimorphism in the compound eye of Heliconius erato: a nymphalid butterfly with at least five spectral classes of photoreceptor. Journal of Experimental Biology 219(15): 2377-2387.
  67. Miyazaki, Kondrashev, Tsuchiya (2018). Visual pigment genes and absorbance spectra in the Japanese sardine Sardinops melanostictus (Teleostei: Clupeiformes). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 218: 54-63.
  68. Morrow, Lazic, Dixon Fox, Kuo, Schott, Gutierrez, Santini, Tropepe, Chang (2017). A second visual rhodopsin gene, rh1-2, is expressed in zebrafish photoreceptors and found in other ray-finned fishes. Journal of Experimental Biology 220(2): 294-303.
  69. Newman & Robinson (2006). The visual pigments of the West Indian manatee (Trichechus manatus). Vision Research 46(20): 3326-3330.
  70. Nolte & Brown (1970). The Spectral Sensitivities of Single Receptor Cells in the Lateral, Median, and Ventral Eyes of Normal and White-Eyed Limulus. Journal of General Physiology 55(6): 787-801.
  71. Oakley & Huber (2004). Differential Expression of Duplicated Opsin Genes in Two EyeTypes of Ostracod Crustaceans. Journal of Molecular Evolution 59: 239-249.
  72. Palecanda, Iwanicki, Steck, Porter (2022). Crustacean conundrums: a review of opsin diversity and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences 337(1862): 20210289.
  73. Parry & Bowmaker (2000). Visual pigment reconstitution in intact goldfish retina using synthetic retinaldehyde isomers. Vision Research 40(17): 2241-2247.
  74. Parry, Carleton, Spady, Carboo, Hunt, Bowmaker (2005). Mix and Match Color Vision: Tuning Spectral Sensitivity by Differential Opsin Gene Expression in Lake Malawi Cichlids. Current Biology 15(19): 1734-1739.
  75. Parry, Poopalasundaram, Bowmaker, Hunt (2004). A Novel Amino Acid Substitution Is Responsible for Spectral Tuning in a Rodent Violet-Sensitive Visual Pigment. Biochemistry 43(25): 8014-8020.
  76. Porter, Awata, Bok, Cronin (2020). Exceptional diversity of opsin expression patterns in Neogonodactylus oerstedii (Stomatopoda) retinas. Proceedings of the National Academy of Sciences 117(16): 8948-8957.
  77. Porter, Cronin, McClellan, Crandall (2007). Molecular Characterization of Crustacean Visual Pigments and the Evolution of Pancrustacean Opsins. Molecular Biology and Evolution 24(1): 253-268.
  78. Porter, Kingston, McCready, Cameron, Hofmann, Suarez, Olsen, Cronin, Robinson (2014). Characterization of visual pigments, oil droplets, lens and cornea in the whooping crane Grus americana. Journal of Experimental Biology 217(21): 3883-3890.
  79. Rölich & Szél (2000). Photoreceptor Cells in the Xenopus Retina. Microscopy Research and Technique 50(5): 327-337.
  80. Sadier, Davies, Yohe, Yun, Donat, Hedrick, Dumont, Dávalos, Rossiter, Sears (2018). Multifactorial processes underlie parallel opsin loss in neotropical bats. eLife 7: e37412.
  81. Sakamoto, Hisatomi, Tokunaga, Eguchi (1996). Two Opsins From the Compound Eye of the Crab Hemigrapsus Sanguineus. Journal of Experimental Biology 199(2): 441-450.
  82. Salcedo, Huber, Henrich, Chadwell, Chou, Paulsen, Britt (1999). Blue- and Green-Absorbing Visual Pigments of Drosophila: Ectopic Expression and Physiological Characterization of the R8 Photoreceptor Cell-Specific Rh5 and Rh6 Rhodopsins. Journal of Neuroscience 19(24): 10716-10726.
  83. Sandkam, Dalton, Breden, Carleton (2018). Reviewing guppy color vision: integrating the molecular and physiological variation in visual tuning of a classic system for sensory drive. Current Zoology 64(4): 535-545.
  84. Schott, Bell, Loew, Thomas, Gower, Streicher, Fujita (2022). Transcriptomic evidence for visual adaptation during the aquatic to terrestrial metamorphosis in leopard frogs. BMC Biology 20(1): 138.
  85. Schott, Perez, Kwiatkowski, Imhoff, Gumm (2022). Evolutionary analyses of visual opsin genes in frogs and toads: Diversity, duplication, and positive selection. Ecology and Evolution 12(2): e8595.
  86. Schott, Van Nynatten, Card, Castoe, Chang (2018). Shifts in Selective Pressures on Snake Phototransduction Genes Associated with Photoreceptor Transmutation and Dim-Light Ancestry. Molecular Biology and Evolution 35(6): 1376-1389.
  87. Shao, Wang, Fu, Yan, Anraku, Chen, Borg (2014). Androgens Increase lws Opsin Expression and Red Sensitivity in Male Three-Spined Sticklebacks. PLOS ONE 9(6): e100330.
  88. Sharkey, Blanco, Lord, Wardill (2023). Jewel Beetle Opsin Duplication and Divergence Is the Mechanism for Diverse Spectral Sensitivities. Molecular Biology and Evolution 40(2): msad023.
  89. Sharkey, Fujimoto, Lord, Shin, McKenna, Skuvorov, Martin, Bybee (2017). Overcoming the loss of blue sensitivity through opsin duplication in the largest animal group, beetles. Scientific Reports 7: 8.
  90. Sharkey, Powell, Bybee (2021). Opsin Evolution in Flower-Visiting Beetles. Frontiers in Ecology and Evolution 9: 676369.
  91. Simões, Foley, Hughes, Zhao, Zhang, Rossiter, Teeling (2018). As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats. Molecular Biology and Evolution 36(1): 54-68.
  92. Simões, Gower, Rasmussen, Sarker, Fry, Casewell, Harrison, Hart, Partridge, Hunt, Chang, Pisani, Sanders (2020). Spectral Diversification and Trans-Species Allelic Polymorphism during the Land-to-Sea Transition in Snakes. Current Biology 30(13): 2608-2615.
  93. Simões, Sampaio, Douglas, Kodandaramaiah, Casewell, Harrison, Hart, Partridge, Hunt, Gower (2016). Visual Pigments, Ocular Filters and the Evolution of Snake Vision. Molecular Biology and Evolution 33(10): 2483-2495.
  94. Simpanya, Wistow, Gao, David, Giblin, Mitton (2008). Expressed sequence tag analysis of guinea pig (Cavia porcellus) eye tissues for NEIBank. Molecular Vision 14: 2413.
  95. Sison-Mangus, Bernard, Lampel, Briscoe (2006). Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. Journal of Experimental Biology 209(16): 3079-3090.
  96. Stieb, Carleton, Cortesi, Marshall, Salzburger (2016). Depth-dependent plasticity in opsin gene expression varies between damselfish (Pomacentridae) species. Molecular Ecology 25(15): 3645-3661.
  97. Takechi & Kawamura (2005). Temporal and spatial changes in the expression pattern of multiple red and green subtype opsin genes during zebrafish development. Journal of Experimental Biology 208(7): 1337-1345.
  98. Valen, Edvardsen, Søviknes, Drivenes, Helvik (2014). Molecular Evidence that Only Two Opsin Subfamilies, the Blue Light- (SWS2) and Green Light-Sensitive (RH2), Drive Color Vision in Atlantic Cod (Gadus morhua). PLOS ONE 9(12): e115436.
  99. Valen, Eilertsen, Edvardsen, Furmanek, Rønnestad, van der Meeren, Karlsen, Nilsen, Helvik (2016). The two-step development of a duplex retina involves distinct events of cone and rod neurogenesis and differentiation. Developmental Biology 416(2): 389-401.
  100. Verlade, Sauer, Walden, Fahrbach, Robertson (2005). Pteropsin: A vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochemistry and Molecular Biology 35(12): 1367-1377.
  101. Wakakuwa, Stewart, Matsumoto, Matsunaga, Arikawa (2014). Physiological basis of phototaxis to near-infrared light in Nephotettix cincticeps. Journal of Comparative Physiology A 200: 527-536.
  102. Xu, Hazard III, Lockman, Crouch, Ma (1998). Molecular Cloning of the Salamander Red and Blue Cone Visual Pigments. Molecular Vision 4: 10.
  103. Yokoyama & Blow (2001). Molecular evolution of the cone visual pigments in the pure rod-retina of the nocturnal gecko, Gekko gekko. Gene 276(1-2): 117-125.
  104. Yokoyama, Blow, Radlwimmer (2000). Molecular evolution of color vision of zebra finch. Gene 259(1-2): 17-24.
  105. Yokoyama & Radlwimmer (1999). The Molecular Genetics of Red and Green Color Vision in Mammals. Genetics 153(2): 919-932.
  106. Yokoyama, Radlwimmer, Blow (2000). Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proceedings of the National Academy of Sciences 97(13): 7366-7371.
  107. Yokoyama, Takenaka, Agnew, Shoshani (2005). Elephants and Human Color-Blind Deuteranopes Have Identical Sets of Visual Pigments. Genetics 170(1): 335-344.
  108. Yokoyama & Yokoyama (2000). Comparative Molecular Biology of Visual Pigments. In: Handbook of Biological Physics vol. 3: 257-296.
  109. Yokoyama, Zhang, Radlwimmer, Blow (1999). Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae). Proceedings of the National Academy of Sciences 96(11): 6279-6284.
  110. Zaccardi, Kelber, Sison-Mangus, Briscoe (2006). Color discrimination in the red range with only one long-wavelength sensitive opsin. Journal of Experimental Biology 209(10): 1944-1955.
  111. Zeiger & Goldsmith (1993). Packaging of rhodopsin and porphyropsin in the compound eye of the crayfish. Visual Neuroscience 10(2): 193-202.
  112. Zhao, Ru, Teeling, Faulkes, Zhang, Rossiter (2009). Rhodopsin Molecular Evolution in Mammals Inhabiting Low Light Environments. PLOS ONE 4(12): e8326.
  113. Zopf, Schmid, Fredman, Eriksson (2013). Spectral sensitivity of the ctenid spider Cupiennius salei. Journal of Experimental Biology 216(21): 4103-4108.